

fair & smart use of the world's fresh water

From field to fashion: examining textile's grey water footprint

Dr Christopher Briggs

Executive Director

Water Footprint Network

Report Authors: Ruth Mathews, Alexandra Freitas, Ertug Ercin

Stockholm WWW, August 29 2017

Water Footprint through a supply-chain

Case Study 1: Cotton in the field

- Water footprint studies of cotton at across 702 farms in 3 regions of India
- Water Footprint of the different agricultural practices
- Grey water footprint of different pesticides and fertilizers

- conventional cotton farming: mostly synthetic agrochemicals for pest control and fertilisers and has the least restrictions in terms of the chemicals
- better cotton farming (REEL): farms are stricter in the use of synthetic chemical pesticides and fertilizers than conventional farms
- organic cotton farming: use more compost, urea, neem and organic seeds

Farm Level Study 2013

Grey Water Footprint represents the largest share of the total water footprint and these values relate to farming practices

Grey water footprint and cotton yield in relation to farm practices

Case study 2: Polyester Fibres

From crude oil exploration up to fibre production

GREY WATER FOOTPRINT 50,690 – 71,033 m³/tonne

GREY WATER FOOTPRINT 51,066 – 71,409 m³/tonne

From wood plantation up to fibre production

water footprint network

Viscose staple fibres (South Africa)

2.4% 6.8% 90.8%

GREY WATER FOOTPRINT 678 - 996 m3/tonne

Viscose filament yarn (South Africa; continuous washing) Viscose filament yarn (Brazil; continuous washing)

GREY WATER FOOTPRINT 30,596 – 30,914 m3/tonne

GREY WATER FOOTPRINT 3,305 – 3,624 m3/tonne

Case study 4: Water Footprints of Washing, Dyeing & Finishing Mills

- Studies done of 53 washingdyeing-finishing mills located in Bangladesh and China
- Water consumption at washingdyeing-finishing mills is proportionally smaller than at the raw materials stage of textile
- water footprint (annual and product) differs significantly among the mills according to processes involved, type of products, type and number of chemicals used and effluent treatment levels.

- The grey water footprint, derived from water pollution, is a major source of water footprint in the mills.
- BOD is the most critical measure of water quality parameter for most of the mills, indicating pollution from dyeing
- Reduction of amounts of chemicals and adequate effluent treatment are necessary to stop long term damage to water sources

Conclusions

- The grey water footprint is the most important component of the water footprint in textile production
- A high proportion of production sites (from field to finishing) are located in areas with high levels of water pollution and water scarcity problems
- The specific processes and practices greatly influence the grey water footprint of similar products
- The grey water footprint is a good metric to compare across the supply chain
- Specific production aspects and the local conditions need to be addressed

Thank you

water footprint network

fair & smart use of the world's fresh water

www.waterfootprint.org